Lecture 18 (TC) Nov. 6, 2008 Notes # Arrhenius Acids/Bases: - Arrhenius Acids have a removable H⁺. - Arrhenius Bases have a removable OH. - Arrhenius acid-base RXNs have the format/model: ``` 1) Acid + Base \rightarrow Salt + Water > HA + B(OH) \rightarrow (B⁺)(A⁻) + H₂O 2) HA \rightarrow H⁺ + A⁻ B(OH) \rightarrow B⁺ + OH⁻ = HA + B(OH) \rightarrow H⁺ + A⁻ + B⁺ + OH⁻ ``` ## **Bronsted-Lowry Acids/Bases:** - Bronsted-Lowry Acids have removable H⁺. - Bronsted-Lowry Bases can 'accept' H⁺ from an acid (acid 1 or acid 2). - Removing H⁺ causes the corresponding base to be more 'negative' charge. - Conjugates: Related by H⁺. - Bronsted-Lowry Acid/Base RXNs usually have the format: ``` 1) Acid 1 \rightarrow^{\leftarrow} H^{+} + Base 1 Base 2 + H^{+} \rightarrow^{\leftarrow} Acid 2 = Acid 1 + Base 2 + H^{+} \rightarrow^{\leftarrow} H^{+} + Acid 2 + Base 1 > 'H'' gets crossed out on both sides (like intermediates). = Acid 1 + Base 2 \rightarrow^{\leftarrow} Acid 2 + Base 1 (or) = HA + B \rightarrow^{\leftarrow} HB^{+} + A^{-} ``` #### Arrhenius: - Arrhenius Acids produce H⁺ when added to water ((/) H₂O). - Arrhenius Bases produce OH when added to water ((/) H₂O). #### **Bronsted-Lowry:** - Bronsted-Lowry Acids donate protons (H⁺). - Bronsted-Lowry Bases accept protons (H⁺). #### **Amphiprotic Substances:** - Some chemicals can be an acid or a base. - Water is an Amphiprotic Substance. - Water can be both a proton donator as well as a proton acceptor. - Autoionization: a fast equilibrium rxn that is always occurring whenever there is water present. ## **Using the table of Conjugate Acid-Base Pairs:** - The acids column is in order from Large to Lowest K_a. (Top to bottom order). - The Base column is in order from weakest to strongest. (Top to bottom order). - The stronger the acid, the weaker the base. - The weaker the acid, the stronger the base. # Conjugate: - Conjugate acids/bases differ by a H⁺. # **Acid Ionization constant:** - Acid ionization constant = K_a - This is a measure of ACID STRENGTH. - If K_a is larger, the Acid is stronger. If its smaller, the Acid is weaker.